Quantum aspects of semantic analysis and symbolic artificial intelligence

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 37 L123
(http://iopscience.iop.org/0305-4470/37/12/L01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.90
The article was downloaded on 02/06/2010 at 17:51

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Quantum aspects of semantic analysis and symbolic artificial intelligence

Diederik Aerts ${ }^{1}$ and Marek Czachor ${ }^{2}$
${ }^{1}$ Centrum Leo Apostel (CLEA) and Foundations of the Exact Sciences (FUND), Vrije Universiteit Brussel, 1050 Brussels, Belgium
${ }^{2}$ Katedra Fizyki Teoretycznej i Metod Matematycznych, Politechnika Gdańska, 80-952 Gdańsk, Poland

Received 17 February 2004
Published 10 March 2004
Online at stacks.iop.org/JPhysA/37/L123 (DOI: 10.1088/0305-4470/37/12/L01)

Abstract

Modern approaches to semantic analysis if reformulated as Hilbert-space problems reveal formal structures known from quantum mechanics. A similar situation is found in distributed representations of cognitive structures developed for the purpose of neural networks. We take a closer look at similarities and differences between the above two fields and quantum information theory.

PACS numbers: 03.67.-a, 89.70.+c, 11.30.Pb

1. Prologue

Let us consider an arbitrary text written by means of a 16-letter alphabet, say: a, b, c, ..., n, o, p. Let us regroup as large a part of the text as possible in quadruples belonging to the set $Q=$ \{aeim, afim, agim, ... dhlm, dhln, dhlo, dhlp\}, and formed by strings obtained by picking out a single letter from a row of the matrix

$$
\left[\begin{array}{cccc}
\mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \tag{1}\\
\mathrm{e} & \mathrm{f} & \mathrm{~g} & \mathrm{~h} \\
\mathrm{i} & \mathrm{j} & \mathrm{k} & \mathrm{l} \\
\mathrm{~m} & \mathrm{n} & \mathrm{o} & \mathrm{p}
\end{array}\right]
$$

when one moves downwards starting from the first row. Now let us define the functions F and G by $F(\mathrm{a})=F(\mathrm{~d})=F(\mathrm{e})=F(\mathrm{~h})=F(\mathrm{i})=F(\mathrm{l})=F(\mathrm{~m})=F(\mathrm{p})=+1$, $F(\mathrm{~b})=F(\mathrm{c})=F(\mathrm{f})=F(\mathrm{~g})=F(\mathrm{j})=F(\mathrm{k})=F(\mathrm{n})=F(\mathrm{o})=-1, G\left(x_{1} x_{2} x_{3} x_{4}\right)=$ $F\left(x_{1}\right)+F\left(x_{2}\right)+F\left(x_{3}\right)-F\left(x_{4}\right)$. On each four-character string of the regrouped part of the text we evaluate the value of G and take its average value $\langle G\rangle$.

The above awkward-looking manipulation with the text is an example of a procedure one might find in a paper on quantitative linguistics or semantic analysis. The analysis reveals certain correlational or contextual aspects of the text, the role of the contextuality measure being played by the average $\langle G\rangle$.

To see what kind of a correlation one can capture, let us parametrize the alphabet by primed and unprimed bits $0,1,0^{\prime}, 1^{\prime}$:

$$
\begin{array}{llll}
\mathrm{a}=(00), & \mathrm{b}=(01), & \mathrm{c}=(10), & \mathrm{d}=(11), \\
\mathrm{e}=\left(00^{\prime}\right), & \mathrm{f}=\left(01^{\prime}\right), & \mathrm{g}=\left(10^{\prime}\right), & \mathrm{h}=\left(11^{\prime}\right), \\
\mathrm{i}=\left(0^{\prime} 0\right), & \mathrm{j}=\left(0^{\prime} 1\right), & \mathrm{k}=\left(1^{\prime} 0\right), & \mathrm{l}=\left(1^{\prime} 1\right), \\
\mathrm{m}=\left(0^{\prime} 0^{\prime}\right), & \mathrm{n}=\left(0^{\prime} 1^{\prime}\right), & \mathrm{o}=\left(1^{\prime} 0^{\prime}\right), & \mathrm{p}=\left(1^{\prime} 1^{\prime}\right) .
\end{array}
$$

After the reparametrization the regrouped text might represent data of an experiment testing the Bell inequality [1] and the function F represents values of the Bell observable for a single pair of measurements. And conversely, any result of an experiment that tests the Bell inequality can be represented as a text written in a 16-letter alphabet.

The result of the form $|\langle G\rangle|>2$ reveals a nonclassical probabilistic structure behind the text. This structure is, of course, typical of the source of the text, since the text itself may be a simple collection of characters on a computer printout. Actually, we can immediately identify the nonclassical elements disclosed by $|\langle G\rangle|>2$: the bits 0 and 0^{\prime} (or 1 and 1^{\prime}) correspond to nonorthogonal vectors, and ordered pairs such as (01) are represented by tensor products. The possibility of hiding information behind nonorthogonal bases is the key idea of quantum cryptography $[2,3]$ and tensor representations of conjunctions are fundamental to quantum information theory (QIT). The observation of Bell that correlations between symbols in 'texts' may reveal the presence of nonorthogonal bases is perhaps the most ingenious ingredient of his famous paper [1].

The idea that some sort of mathematical manipulation with texts, or some apparently artificial mathematical representation of them, may reveal deep structures such as similarity of meaning or other nontrivial correlations, is at the root of semantic analysis (SA). Still another field where analogies with the Bell inequality example are particularly striking is related to neural-network distributed representations of concepts [4]. The links of such scientific disciplines with quantum mechanics, and QIT in particular, are almost unexplored as yet. The present paper is an attempt at filling the gap [5].

2. Vector models of texts

Modern approaches to SA typically model words and their meanings by vectors from finitedimensional vector spaces. The prominent examples of such approaches are latent semantic analysis (LSA) [6, 7], hyperspace analogue to language (HAL) [8], probabilistic latent semantic analysis (pLSA) [9], latent Dirichlet allocation [10], topic model [11], or word association space (WAS) [12]. In the present letter we concentrate on a simplified version of LSA, but we believe the discussion we present can be applied to all vector models of language and concept representation.

SA is typically based on text co-occurrence matrices and data-analysis technique employing singular value decomposition (SVD). Various models of SA provide powerful methods of determining similarity of meaning of words and passages by analysis of large text corpora. The procedures are fully automatic and allow us to analyse texts by computers without the involvement of any human understanding. For example, what makes LSA quite impressive comes from the experiments with simulation of human performance. LSAprogrammed machines were able to pass multiple-choice exams such as a test of English as a foreign language (TOEFL) (after training on general English) [13] or, after learning from an introductory psychology textbook, a final exam for psychology students [7].

These and other achievements of LSA raise the question of its relevance for the problem of brain functioning and AI [14]. However, an element we found particularly intriguing and
which is the main topic of our paper, is in similarities between LSA and formal structures of QIT.

LSA is essentially a Hilbert-space formalism. One represents words by vectors spanning a finite-dimensional space and text passages are represented by linear combinations of such words, with appropriate weights related to the frequency of occurrence of the words in the text. Similarity of meaning is represented by scalar products between certain word-vectors (belonging to the so-called semantic space).

In QIT, words, also treated as vectors, are being processed by quantum algorithms or encoded/decoded by means of quantum cryptographic protocols. Although one starts to think of quantum programming languages [15-17], the semantic issues of quantum texts are difficult to formulate. LSA is in this context a natural candidate as a starting point for 'quantum linguistics'.

Still, LSA has certain conceptual problems of its own. As stressed by many authors, the greatest difficulty of LSA is that it treats a text passage as a 'bag of words', a set where order is irrelevant [18]. The difficulty is a serious one since it is intuitively clear that the syntax is important for the evaluation of text meaning. The sentences 'Mary hit John' and 'John hit Mary' cannot be distinguished by LSA; 'Mary did hit John' and 'John did not hit Mary' have practically identical LSA representations because 'not' is in LSA a very short vector [14]. What LSA can capture is that the sentences are about violence.

We think that experience from QIT may prove useful here. A basic object in QIT is not a word but a letter. Typically one works with the binary alphabet consisting of 0 and 1 qubits. Ordering of qubits is obtained by means of the tensor product. Ordering of words can be obtained in the same way, but before we proceed with QIT formalism, let us explain the standard LSA and formulate it in quantum mechanical notation.

3. Semantic analysis: an illustration

Let us consider the following passage:
' $\left(s_{1}\right)$ How much wood would a woodchuck chuck if a woodchuck could chuck wood? $\left(s_{2}\right)$ Woodchuck would chuck as much wood as a woodchuck could chuck if a woodchuck could chuck wood. (s_{3}) Could woodchuck chuck 35 cubic feet of dirt? $\left(s_{4}\right)$ If a woodchuck could chuck wood woodchuck would chuck 700 pounds of wood.'

The LSA matrix representation of this text reads

	s_{1}	s_{2}	s_{3}	s_{4}
how	1	0	0	0
much	1	1	0	0
wood	2	2	0	2
would	1	1	0	1
a	2	2	0	1
woodchuck	2	3	1	2
chuck	2	3	1	2
if	1	1	0	1
could	1	2	1	1
35	0	0	1	0
cubic	0	0	1	0
feet	0	0	1	0
of	0	0	1	1
dirt	0	0	1	0
700	0	0	0	1

1 \& 1 \& 0 \& 0

2 \& 2 \& 0 \& 2

1 \& 1 \& 0 \& 1

2 \& 2 \& 0 \& 1

2 \& 3 \& 1 \& 2

2 \& 3 \& 1 \& 2

1 \& 1 \& 0 \& 1

1 \& 2 \& 1 \& 1

0 \& 0 \& 1 \& 0

0 \& 0 \& 1 \& 0

pounds \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 0

0 \& 0 \& 1 \& 1

0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 1\end{array}\right)\).

It is usual to pre-process A_{0} by multiplying each entry by a function associated with the entropy of an appropriate word evaluated on the basis of an entire text. The question of what kind of a co-occurrence matrix one should relate to a text is actually an open one, and is investigated in various alternatives to LSA (HAL, WAS, topic model). For simplicity we skip this point.

The text corresponds now to the map $A: \boldsymbol{R}^{4} \rightarrow \boldsymbol{R}^{16}$, whose SVD (up to numerical roundup errors) is $A_{0}=U^{\dagger} D_{0} V$ where

$$
\begin{align*}
& U^{\dagger}=\left(\begin{array}{cccc}
-0.06 & -0.12 & 0.15 & 0.70 \\
-0.14 & -0.15 & 0.35 & 0.08 \\
-0.40 & -0.22 & -0.26 & 0.23 \\
-0.20 & -0.11 & -0.13 & 0.11 \\
-0.34 & -0.26 & 0.21 & 0.20 \\
-0.50 & 0.11 & 0.04 & -0.20 \\
-0.50 & 0.11 & 0.04 & -0.20 \\
-0.20 & -0.11 & -0.13 & 0.11 \\
-0.30 & 0.23 & 0.17 & -0.32 \\
-0.02 & 0.37 & 0.11 & 0.18 \\
-0.02 & 0.37 & 0.11 & 0.18 \\
-0.02 & 0.37 & 0.11 & 0.18 \\
-0.07 & 0.41 & -0.36 & 0.20 \\
-0.02 & 0.37 & 0.11 & 0.18 \\
-0.05 & 0.04 & -0.48 & 0.02 \\
-0.05 & 0.04 & -0.48 & 0.02
\end{array}\right) \tag{2}\\
& D_{0}=\left(\begin{array}{ccccc}
8.38 & 0 & 0 & 0 \\
0 & 2.52 & 0 & 0 \\
0 & 0 & 1.79 & 0 & \\
0 & 0 & 0 & 1.04
\end{array}\right) \tag{3}\\
& V=\left(\begin{array}{cccc}
-0.52 & -0.67 & -0.17 & -0.48 \\
-0.30 & -0.07 & 0.94 & 0.10 \\
0.28 & 0.34 & 0.21 & -0.86 \\
0.73 & -0.64 & 0.18 & 0.02
\end{array}\right) \tag{4}
\end{align*}
$$

The essential step of LSA is the reduction

$$
\begin{equation*}
A_{0}=U^{\dagger} D_{0} V \mapsto A_{1}=U^{\dagger} D_{1} V \tag{5}
\end{equation*}
$$

where $D_{1}=P D_{0}$ and P is a projector commuting with D_{0}. For example, if

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{6}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

then

$$
A_{1}=\left(\begin{array}{llll}
0.26 & 0.33 & 0.08 & 0.24 \tag{7}\\
0.61 & 0.78 & 0.19 & 0.56 \\
1.74 & 2.24 & 0.56 & 1.60 \\
0.87 & 1.12 & 0.28 & 0.80 \\
1.48 & 1.90 & 0.48 & 1.36 \\
2.17 & 2.80 & 0.71 & 2.01 \\
2.17 & 2.80 & 0.71 & 2.01 \\
0.87 & 1.12 & 0.28 & 0.80 \\
1.30 & 1.68 & 0.42 & 1.20 \\
0.08 & 0.11 & 0.02 & 0.08 \\
0.08 & 0.11 & 0.02 & 0.08 \\
0.08 & 0.11 & 0.02 & 0.08 \\
0.30 & 0.39 & 0.09 & 0.28 \\
0.08 & 0.11 & 0.02 & 0.08 \\
0.21 & 0.28 & 0.07 & 0.20 \\
0.21 & 0.28 & 0.07 & 0.20
\end{array}\right) .
$$

We will not go very deeply into the details of how and why a reduced representation, of the type illustrated by A_{1}, may allow a computer to pass TOEFL not worse than an average non-native speaker who wants to study in the USA, and refer the reader to publications on LSA. For our purposes it is sufficient to know that the rows of A_{1} are termed the word-vectors and the space of word-vectors is known as the semantic space. Cosines between two word-vectors (or just their scalar products) are measuring a semantic distance (similarity of meaning) between words within a given set of text corpora represented by A. What is important, SVD can make some entries of A_{1} negative and even make some scalar products negative, the latter occurring for antonyms. The coefficients of word-vectors lose, after SVD, the simple link to frequencies of occurrences of words.

Of course, the dimensions appearing in real texts investigated by means of LSA are much greater (for example 30473 columns and 60768 rows in the experiment discussed in [13]). Experience shows that the analysis is most efficient if the projector P projects on a subspace of dimension around 300, but the meaning of this dimension is as yet a subject of speculation ${ }^{3}$.

4. Semantic analysis in quantum notation

In our example, the matrix U^{\dagger} is not square but its columns are mutually orthogonal. Taking any 12 orthonormal vectors that are, in addition, orthogonal to the columns of U^{\dagger} we can replace U^{\dagger} by a 16×16 unitary matrix \tilde{U}^{\dagger} whose first four columns coincide with those of U^{\dagger}, and end up with SVD of the form

$$
\tilde{A}_{k}=\left(A_{k}, 0\right)=\tilde{U}^{\dagger}\left(\begin{array}{cc}
D_{k} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
V & 0 \\
0 & V^{\perp}
\end{array}\right)=\tilde{U}^{\dagger} \tilde{D}_{k} \tilde{V}
$$

$k=0,1$, where all the matrices are square and V^{\perp} is an arbitrary unitary matrix of appropriate dimension. The map $A_{k} \mapsto \tilde{A}_{k}$ neither adds nor removes any information from the text; its only objective is to work with text matrices and their SVDs that may be regarded as operators mapping a certain Hilbert space \mathcal{H} onto itself.

[^0]The Hilbert space \mathcal{H} is finite dimensional, but in principle one cannot impose any limitation on the number of words or sentences one wants to take into account. It is therefore natural to treat all the concrete examples as subspaces of an infinite-dimensional Hilbert space of all the possible words. Whether sentences or other text units are regarded as collections of words or as new words is a matter of convention. Assume each word of a vocabulary is represented by a basis vector $|n\rangle$, where n is a natural number. The text matrix ($\tilde{A}=\tilde{A}_{0}$ or $\tilde{A}=\tilde{A}_{1}$) corresponds to the operator $\hat{A}=\sum_{m n} A_{m n}|m\rangle\langle n|$. The column representing the nth sentence is given by the (unnormalized) vector

$$
\begin{equation*}
\left|s_{n}\right\rangle=\hat{A}|n\rangle=\sum_{m} A_{m n}|m\rangle \tag{8}
\end{equation*}
$$

For example, the sentence s_{2} is in LSA represented by the sentence-vector

$$
\left|s_{2}\right\rangle=|2\rangle+|4\rangle+|8\rangle+2(|3\rangle+|5\rangle+|9\rangle)+3(|6\rangle+|7\rangle) .
$$

After SVD the coefficients of a sentence-vector are typically neither natural nor positive. Let us note that $\left|s_{2}\right\rangle$ is not a word-vector in the sense of LSA, but a sentencevector: word-vectors are the rows of the text matrix. The rows are obtained from \hat{A} by $\left\langle w_{m}\right|=\langle m| \hat{A}$. The similarity of meaning of, say, 'how' and 'much' is given by $\cos ($ how, much $)=\left\langle w_{1} \mid w_{2}\right\rangle /\left(\left\|w_{1}\right\| \cdot\left\|w_{2}\right\|\right)$. (Recall that LSA gives optimal characterization of meaning if one calculates the scalar product after the reduction $D_{0} \mapsto D_{1}=P D_{0}$ with appropriately chosen P; in the example, before reduction $\cos ($ how, much $)=0.707107$ and after the reduction \cos (how, much) $=0.999$ 985) .

Putting this differently, the word-vectors characteristic of a text represented by the operator \hat{A} are given by $\left|w_{m}\right\rangle=A^{\dagger}|m\rangle$. The matrix representing similarities of meaning between all the possible pairs of words corresponding to the text \hat{A} is thus given by

$$
\cos (m \text { th word, } n \text {th word })=\frac{\langle m| \hat{A} \hat{A}^{\dagger}|n\rangle}{\sqrt{\langle m| \hat{A} \hat{A}^{\dagger}|m\rangle} \sqrt{\langle n| \hat{A} \hat{A}^{\dagger}|n\rangle}} .
$$

As we can see, the entire information about mutual relations between words is in LSA encoded in the operator $\rho=\hat{A} \hat{A}^{\dagger}$. Taking into account (8) and the resolution of unity $\mathbf{1}=\sum_{n}|n\rangle\langle n|$ we can write

$$
\begin{equation*}
\rho=\hat{A} \sum_{n}|n\rangle\langle n| \hat{A}^{\dagger}=\sum_{n}\left|s_{n}\right\rangle\left\langle s_{n}\right|=\sum_{n} p_{n}^{s}\left|\sigma_{n}\right\rangle\left\langle\sigma_{n}\right| \tag{9}
\end{equation*}
$$

with $p_{n}^{s}=\left\langle s_{n} \mid s_{n}\right\rangle$ and $\left\langle\sigma_{n} \mid \sigma_{n}\right\rangle=1$. Since in any practical application the number of words is finite, the sum in (9) is finite as well and $\operatorname{Tr} \rho=\|A\|_{\text {HS }}^{2}=\sum_{n} \lambda_{n}<\infty$, where λ_{n} are eigenvalues of $N=\hat{A}^{\dagger} \hat{A}$, and $\|\cdot\|_{\text {HS }}$ is the Hilbert-Schmidt norm. For this reason ρ is formally an unnormalized density matrix of the set of sentences.

The operator N plays an essential role in LSA. To see this let us look at the explicit proof of SVD formulated in the quantum notation (physicists will recognize here the so-called Schmidt decomposition). Let $\left|\lambda_{n}\right\rangle$ be a normalized eigenvector of N, i.e. $N\left|\lambda_{n}\right\rangle=\lambda_{n}\left|\lambda_{n}\right\rangle$. Denoting $\left|\alpha_{n}\right\rangle=\hat{A}\left|\lambda_{n}\right\rangle$ we compute

$$
\begin{align*}
\hat{A} & =\sum_{\left|\alpha_{n}\right\rangle \neq 0}\left|\alpha_{n}\right\rangle\left\langle\lambda_{n}\right| \\
& =\sum_{\left|\alpha_{n}\right\rangle \neq 0} \frac{\left|\alpha_{n}\right\rangle}{\left\|\alpha_{n}\right\|} \sqrt{\lambda_{n}}\left\langle\lambda_{n}\right| \\
& =\underbrace{\sum_{k}\left|\beta_{k}\right\rangle\langle k|}_{\tilde{U} \dagger} \underbrace{\sum_{l} \sqrt{\lambda_{l}}|l\rangle\langle l|}_{\tilde{D}} \underbrace{\sum_{m}|m\rangle\left\langle\lambda_{m}\right|}_{\tilde{V}} \tag{10}
\end{align*}
$$

where $\left|\beta_{k}\right\rangle=\left|\alpha_{k}\right\rangle /\left\|\alpha_{k}\right\|$ if $\lambda_{k}>0$, or any other basis vector from the subspace corresponding to $\lambda_{k}=0$, if $\lambda_{k}=0$. It is clear that the singular values in SVD are given by $\sqrt{\lambda_{k}}$. The LSA procedure is essentially equivalent to the spectral analysis of N.

Let us finally note that N can be written as

$$
N=\hat{A}^{\dagger} \sum_{n}|n\rangle\langle n| \hat{A}=\sum_{n}\left|w_{n}\right\rangle\left\langle w_{n}\right|=\sum_{n} p_{n}^{w}\left|\omega_{n}\right\rangle\left\langle\omega_{n}\right|
$$

with $p_{n}^{w}=\left\langle w_{n} \mid w_{n}\right\rangle$ and $\left\langle\omega_{n} \mid \omega_{n}\right\rangle=1$, i.e. as an unnormalized density matrix representing a mixture of word-vectors.

5. Supersymmetry and dimensional reductions

The duality between sentence-vectors and word-vectors one of whose manifestations is the link $\hat{A} \hat{A}^{\dagger} \leftrightarrow \hat{A}^{\dagger} \hat{A}$ is well known from supersymmetric theories [19]. In supersymmetric terminology operators $\hat{A} \hat{A}^{\dagger}$ and $\hat{A}^{\dagger} \hat{A}$ are known as superpartners.

The dimensional reduction employed in LSA is performed on the spectrum of N. Since one eliminates in this way small eigenvalues, the procedure is analogous to some sort of purification of word-vector density matrices. But we know that one of the standard results of supersymmetric quantum mechanics states that N and ρ are isospectral. The interchange of N and ρ is equivalent to replacing word-vectors by sentence-vectors. Dimensional reduction can thus be performed for both N and ρ, in the latter case the reduction deals with sentence-vector density matrices. Finally, one can combine the two approaches. A 'supersymmetric LSA' can be based on supercharges $Q=\left(\begin{array}{cc}0 & A \\ A^{\dagger} & 0\end{array}\right)$ and the two density matrices taken simultaneously in $H=Q^{2}=\rho \oplus N$.

In addition to the above dimensional reductions, two additional reductions are very natural from the viewpoint of our quantum interpretation. Let us note that in addition to the spectrum $\left\{\lambda_{n}\right\}$, we have two sets of 'mixing parameters': $\left\{p_{n}^{s}\right\}$ and $\left\{p_{n}^{w}\right\}$. The relations between them are the following:

$$
\begin{align*}
& p_{n}^{w}=\left\langle w_{n} \mid w_{n}\right\rangle=\langle n| A A^{\dagger}|n\rangle=\rho_{n n} \tag{11}\\
& p_{n}^{s}=\left\langle s_{n} \mid s_{n}\right\rangle=\langle n| A^{\dagger} A|n\rangle=N_{n n} \tag{12}
\end{align*}
$$

Elimination of small diagonal elements $\rho_{n n}$ or $N_{n n}$ is not equivalent to eliminating small eigenvalues of N or ρ. However, after this type of 'purification' the resulting operators $\tilde{\rho}$ and \tilde{N} are still positive and, hence, can be factorized as $\tilde{\rho}=B B^{\dagger}, \tilde{N}=C^{\dagger} C$, leading effectively to two new types of reduction: $A \mapsto B$ and $A \mapsto C$.

6. Fock space of words

As we have seen, LSA can be formulated as a Hilbert-space problem. The 'bag of words' analysis is performed in \mathcal{H}. The ordered sequences of words can, in principle, be constructed in exact analogy with the ordered sequences of letters in QIT. Still, there is a subtlety we want to point out.

Consider a phrase, i.e. an ordered n-tuple of words, $\left(\operatorname{word}_{1}, \ldots, \operatorname{word}_{n}\right)$. Quantum physicist's intuition tells us that the natural representation of the sentence is a tensor product of vectors representing the words. The difficulty is this: which vectors should one choose? The mutually orthogonal basis vectors $\left|j_{1}\right\rangle, \ldots,\left|j_{n}\right\rangle$, or rather the associated word-vectors $\left|w_{1}\right\rangle=A^{\dagger}\left|j_{1}\right\rangle, \ldots,\left|w_{n}\right\rangle=A^{\dagger}\left|j_{n}\right\rangle$?

Whatever representation one chooses, the phrase $\left(n_{1}, \ldots, n_{K}\right)$ will be mapped onto

$$
\left|n_{1}, \ldots, n_{K}\right\rangle=\left|n_{1}\right\rangle \otimes \cdots \otimes\left|n_{K}\right\rangle \in \overbrace{\mathcal{H} \otimes \cdots \otimes \mathcal{H}}^{K}=\mathcal{H}^{\otimes K} .
$$

Including the empty word we arrive at the Fock space of all the text passages $\mathcal{H}_{F}=\oplus_{K=0}^{\infty} \mathcal{H}^{\otimes K}$.
LSA is performed in \mathcal{H}_{F} in exactly the same way as in \mathcal{H}. The structures one can investigate are much richer. Taking as an example Stein's phrase 'Rose is a rose is a rose is a rose', not only can we work with

$$
\begin{equation*}
\left.\left.\left|s_{1}\right\rangle=4 \mid \text { rose }\right\rangle+3 \mid \text { is }\right\rangle+3|\mathrm{a}\rangle \in \mathcal{H} \tag{13}
\end{equation*}
$$

but also with vectors revealing the syntactic structures, for example,

$$
\begin{aligned}
& \left.\left.\left.\left|s_{2}\right\rangle=\mid \text { rose }\right\rangle \oplus 3 \mid \text { is }\right\rangle \otimes|\mathrm{a}\rangle \otimes \mid \text { rose }\right\rangle \in \mathcal{H} \oplus \mathcal{H}^{\otimes 3} \subset \mathcal{H}_{F} \\
& \left.\left.\left.\left|s_{3}\right\rangle=(\mid \text { rose }\rangle+3 \mid \text { is }\right\rangle\right) \oplus 3|\mathrm{a}\rangle \otimes \mid \text { rose }\right\rangle \in \mathcal{H} \oplus \mathcal{H}^{\otimes 2} \subset \mathcal{H}_{F}
\end{aligned}
$$

The above formulae show a typical feature of Fock spaces, namely superpositions of vectors belonging to different tensor powers. It is very interesting that similar constructions are encountered in convolution-based memory models, such as TODAM [20] or holographic reduced representations (HRRs) [4].

7. Relation to Smolensky's tensor product binding

Smolensky in [21] proposed tensor products of vectors as a means of solving the so-called binding problem: how to keep track of which features belong to which objects in a formal connectionist model of coding? In the linguistic context of SA the binding problem is equivalent to the problem of representing syntax. Links to quantum structures are particularly striking here, but there are also intriguing logical differences with what one would expect from a QIT perspective.

First, one represents an activity state of a network by a vector, and this is very close to what a quantum physicist would do. In comments to his definition 2.1 Smolensky stresses that the vectors are always written in the same and fixed basis. So formally we do not really need vectors, but n-tuples of numbers are enough. This is against the philosophy of QIT where states are indeed vectors and the same information may be encoded in non-parallel vectors.

The fact that preferred basis is used becomes even more important in models such as TODAM or HRRs where the tensor product is replaced by its 'compressed form': convolution or circular convolution. Both operations are defined on n-tuples and not on vectors. Still, one can argue that in quantum measurement theory we do indeed deal with preferred pointer bases [22] and the models such as HRRs may refer to this level of analysis.

A predicate $\mathrm{p}(\mathrm{a}, \mathrm{b})$, such as eat (John, fish), is represented by the vector $\boldsymbol{r}_{1} \otimes \boldsymbol{a}+$ $\boldsymbol{r}_{2} \otimes \boldsymbol{b}$ where the vectors \boldsymbol{r}_{k} represent roles and $\boldsymbol{a}, \boldsymbol{b}$ are fillers. A predicate is, accordingly, given by an entangled activity state. A person trained on QIT would expect the vector to mean 'role \boldsymbol{r}_{1} AND filler \boldsymbol{a}, OR role \boldsymbol{r}_{2} AND filler \boldsymbol{b} '. Of course, the intention of Smolensky was different: The sum is meant to represent the conjunction (AND) and not the alternative (OR). This feature is also characteristic of other neural-network models. Why is it so and is this type of representation crucial for symbolic AI?

The above similarities and differences show that further exploration of possible implications of connectionist models for QIT, and vice versa, may be worth further studies. We will not pursue these matters further here.

8. Efficiency of tensor representations

Tensor products are more 'economic' than Cartesian powers due to the identifications of the type $(\alpha|\psi\rangle) \otimes|\phi\rangle=|\psi\rangle \otimes(\alpha|\phi\rangle)=\alpha(|\psi\rangle \otimes|\phi\rangle)$ that do not hold in Cartesian products. Thus the Fock space automatically performs a kind of dimensional reduction, which is the main idea of both LSA and distributed representations.

If we are more interested in the issue of binding than in the ordering of words then further compression of information is possible if one employs symmetric (bosonic) or antisymmetric (fermionic) Fock spaces. Symmetric tensor powers are closer to convolutions employed in HRRs but, unlike convolutions, are defined on vectors and not n-tuples of numbers.

Let us also note that in binary (or qubinary) representations all tensor powers can be decomposed into irreducible components, in exactly the same way it is performed in 2 -spinor calculus [23]. It is known that any irreducible representation corresponds to symmetric spinors and any antisymmetric spinor is a scalar times the singlet (all antisymmetric two-index spinors are proportional to one another). So it is very natural indeed to employ representations based on symmetric operations as the main building blocks of, say, memory models (convolution used in HRRs is also commutative).

All these links are interesting from the point of view of the discussions between Penrose and proponents of classical AI [24]. If brain is a quantum device, as suggested in [25] or, which is a weaker condition, if the conceptual part of the mind entails a formal quantum structure [26, 27], then the presence of tensor structures in SA or AI will not be accidental.

The question of tensor representations of semantic aspects of texts in principle can be settled experimentally. Document retrieval experiments based on quantum logic have already been performed [28] and the results are encouraging.

Let us finally make the remark that some authors stress (cf [29]) that semantic categorizations cannot be modelled by a set logic. Experiments were reported where, for instance, people were willing to accept that chairs are a type of furniture and that carseats are a type of chair, but would then deny that carseats are a type of furniture (for a review cf [30]). Trying to model the meanings of 'furniture', 'chair', 'carseat' by means of set-theoretical constructions one arrives at contradiction with the inequality $P(A \wedge B \wedge C) \leqslant P(A \wedge C)$ (cf also [31]). In QIT this type of contradiction is at the roots of the Bell inequality violation, whose proof is based on set-theoretic constructions while QIT employs tensor structures in Hilbert spaces. Similarly, tests of tensor structures via SA may play an analogous role in AI , quantitative linguistics or experimental psychology, as the Bell inequality did for hiddenvariables theories.

Acknowledgments

This research was supported by grant G.0339.02 of the Flemish Fund for Scientific Research and the KBN grant no PBZ-MIN/008/P03/2003. We are indebted to T Plate for his comments on tensor structures in distributed representations.

References

[1] Bell J S 1964 On the Einstein-Podolsky-Rosen paradox Physics 1195
[2] Bennett C H and Brassard G 1984 Quantum cryptography: Public key distribution and coin tossing Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing (Bangalore, India) (New York: IEEE) p 175
[3] Ekert A 1991 Quantum cryptography based on Bell's theorem Phys. Rev. Lett. 67661
[4] Plate T A 2003 Holographic Reduced Representations: Distributed Representations for Cognitive Structures (Stanford, CA: CSLI Publications)
[5] This paper is an extended version of the preprint Aerts D and Czachor M 2003 Bag-of-words problem and semantic analysis in Fock space Preprint quant-ph/0309022v1
[6] Deerwester S et al 1990 Indexing by latent semantic analysis J. Am. Soc. Inf. Sci. 41391
[7] Landauer T K, Foltz P W and Laham D 1998 Introduction to latent semantic analysis Discourse Process. 25 259
[8] Lund K and Burgess C 1996 Producing high-dimensional semantic spaces from lexical co-occurence Behav. Res. Methods Instrum. Comput. 28203
[9] Hofmann T 1999 Probabilistic latent semantic analysis Proc. Uncertainty in Artificial Intelligence, UAI'99 (Stockholm)
[10] Blei D M, Ng A N and Jordan M I 2003 Latent Dirichlet allocation J. Mach. Learn. Res. 3993
[11] Griffiths T L and Steyvers M 2002 Prediction and semantic association Advances in Neural Information Processing Systems (Cambridge, MA: MIT Press)
[12] Steyvers M, Shiffrin R M and Nelson D L Word association spaces for predicting semantic similarity effects in episodic memory to appear in Experimental Cognitive Psychology and its Applications: Festschrift in Honour of L Bourne, W Kintsch and T Landauer ed A Healy
[13] Landauer T K and Dumais S T 1997 A solution of Plato's problem: the latent semantic analysis theory of the acquisition, induction, and representation of knowledge Psychol. Rev. 104211
[14] Landauer T K 2002 On the computational basis of learning and cognition: arguments from LSA Psychology of Learning and Motivation vol 41, ed B H Ross (New York: Academic) p 43
[15] Oemer B 2000 Quantum programming in QCL MSc Thesis Technical University of Wien
[16] Bettelli S, Serafini L and Calarco T 2003 Towards an architecture for quantum programming Eur. Phys. J. D 25 181
[17] Selinger P Towards a quantum programming language Math. Struct. Comput. Sci. at press
[18] Landauer T K, Laham D and Foltz P W 1998 Learning human-like knowledge by singular value decomposition: a progress report Advances in Neural Information Processing Systems vol 10 (Cambridge, MA: MIT Press) p 45
[19] Cooper F, Khare A and Sukhatme U 1995 Supersymmetry and quantum mechanics Phys. Rep. 151268
[20] Murdock B B 1982 A theory for the storage and retreival of item and associative information Psychol. Rev. 89 627
[21] Smolensky P 1990 Tensor product variable binding and the representation of symbolic structures in connectionist systems Artif. Intell. 46159
[22] Bush P, Lahti P J and Mittelstaedt P 1991 The Quantum Theory of Measurement (Lecture Notes in Physics vol m2) (Berlin: Springer)
[23] Penrose R and Rindler W 1984 Spinors and Space-Time vol 1 (Cambridge: Cambridge University Press)
[24] See the collection of papers in Psyche 2 Online at http://psyche.cs.monash.edu.au
[25] Penrose R 1990 The Emperor's New Mind (Oxford: Oxford University Press) Penrose R 1994 Shadows of the Mind (Oxford: Oxford University Press)
[26] Gabora L and Aerts D 2002 Contextualizing concepts using a mathematical generalization of the quantum formalism J. Exp. Theor. Artif. Intell. 14327
[27] Aerts D and Gabora L A theory of concepts and their combinations Kybernetes at press
[28] Widdows D and Peters S 2003 Word vectors and quantum logic: Experiments with negation and disjunction Proc. Mathematics and Language (Bloomington, June 2003) ed R T Oehrle and J Rogers 141-54
[29] Hampton J A 1982 A demonstration of intransivity in natural categories Cognition 12151
[30] Hampton J 1997 Conceptual combination Knowledge, Concepts, and Categories ed K Lamberts and D Shanks (Hove: Psychology Press) p 133
[31] Aerts D and Aerts S 1994 Applications of quantum statistics in psychological studies of decision process Found. Sci. 185

[^0]: ${ }^{3}$ WAS is a memory vector model where performance comparable to LSA is obtained with only 20-40 dimensions.

